Pages
▼
17 August 2009
Laser vaporization
The invention: Technique using laser light beams to vaporize the
plaque that clogs arteries.
The people behind the invention:
Albert Einstein (1879-1955), a theoretical American physicist
Theodore Harold Maiman (1927- ), inventor of the laser
Light, Lasers, and Coronary Arteries
Visible light, a type of electromagnetic radiation, is actually a
form of energy. The fact that the light beams produced by a light
bulb can warm an object demonstrates that this is the case. Light
beams are radiated in all directions by a light bulb. In contrast, the
device called the “laser” produces light that travels in the form of a
“coherent” unidirectional beam. Coherent light beams can be focused
on very small areas, generating sufficient heat to melt steel.
The term “laser” was invented in 1957 by R. Gordon Gould of
Columbia University. It stands for light amplification by stimulated
emission of radiation, the means by which laser light beams are
made. Many different materials—including solid ruby gemstones,
liquid dye solutions, and mixtures of gases—can produce such
beams in a process called “lasing.” The different types of lasers yield
light beams of different colors that have many uses in science, industry,
and medicine. For example, ruby lasers, which were developed
in 1960, are widely used in eye surgery. In 1983, a group of
physicians in Toulouse, France, used a laser for cardiovascular treatment.
They used the laser to vaporize the “atheroma” material that
clogs the arteries in the condition called “atherosclerosis.” The technique
that they used is known as “laser vaporization surgery.”
Laser Operation, Welding, and Surgery
Lasers are electronic devices that emit intense beams of light
when a process called “stimulated emission” occurs. The principles
of laser operation, including stimulated emission, were established
by Albert Einstein and other scientists in the first third of the twentieth century. In 1960, Theodore H. Maiman of the Hughes Research
Center in Malibu, California, built the first laser, using a ruby crystal
to produce a laser beam composed of red light.
All lasers are made up of three main components. The first of
these, the laser’s “active medium,” is a solid (like Maiman’s ruby
crystal), a liquid, or a gas that can be made to lase. The second component
is a flash lamp or some other light energy source that puts
light into the active medium. The third component is a pair of mirrors
that are situated on both sides of the active medium and are designed
in such a way that one mirror transmits part of the energy
that strikes it, yielding the light beam that leaves the laser.
Lasers can produce energy because light is one of many forms of
energy that are called, collectively, electromagnetic radiation (among
the other forms of electromagnetic radiation are X rays and radio
waves). These forms of electromagnetic radiation have different wavelengths;
the smaller the wavelength, the higher the energy level. The
energy level is measured in units called “quanta.” The emission of
light quanta from atoms that are said to be in the “excited state” produces
energy, and the absorption of quanta by unexcited atoms—
atoms said to be in the “ground state”—excites those atoms.
The familiar light bulb spontaneously and haphazardly emits
light of many wavelengths from excited atoms. This emission occurs
in all directions and at widely varying times. In contrast, the
light reflection between the mirrors at the ends of a laser causes all
of the many excited atoms present in the active medium simultaneously
to emit light waves of the same wavelength. This process is
called “stimulated emission.”
Stimulated emission ultimately causes a laser to yield a beam of
coherent light, which means that the wavelength, emission time,
and direction of all the waves in the laser beam are the same. The
use of focusing devices makes it possible to convert an emitted laser
beam into a point source that can be as small as a few thousandths of
an inch in diameter. Such focused beams are very hot, and they can
be used for such diverse functions as cutting or welding metal objects
and performing delicate surgery. The nature of the active medium
used in a laser determines the wavelength of its emitted light
beam; this in turn dictates both the energy of the emitted quanta and
the appropriate uses for the laser.Maiman’s ruby laser, for example, has been used since the 1960’s
in eye surgery to reattach detached retinas. This is done by focusing
the laser on the tiny retinal tear that causes a retina to become detached.
The very hot, high-intensity light beam then “welds” the
retina back into place, bloodlessly, by burning it to produce scar tissue.
The burning process has no effect on nearby tissues. Other
types of lasers have been used in surgeries on the digestive tract and
the uterus since the 1970’s.
In 1983, a group of physicians began using lasers to treat cardiovascular
disease. The original work, which was carried out by a
number of physicians in Toulouse, France, involved the vaporization
of atheroma deposits (atherosclerotic plaque) in a human artery. This very exciting event added a new method to medical science’s
arsenal of life-saving techniques.
Consequences
Since their discovery, lasers have been used for many purposes
in science and industry. Such uses include the study of the laws of
chemistry and physics, photography, communications, and surveying.
Lasers have been utilized in surgery since the mid-1960’s, and
their use has had a tremendous impact on medicine. The first type
of laser surgery to be conducted was the repair of detached retinas
via ruby lasers. This technique has become the method of choice for
such eye surgery because it takes only minutes to perform rather
than the hours required for conventional surgical methods. It is also
beneficial because the lasing of the surgical site cauterizes that site,
preventing bleeding.
In the late 1970’s, the use of other lasers for abdominal cancer
surgery and uterine surgery began and flourished. In these
forms of surgery, more powerful lasers are used. In the 1980’s,
laser vaporization surgery (LVS) began to be used to clear atherosclerotic
plaque (atheromas) from clogged arteries. This methodology
gives cardiologists a useful new tool. Before LVS was
available, surgeons dislodged atheromas by means of “transluminal
angioplasty,” which involved pushing small, fluoroscopeguided
inflatable balloons through clogged arteries.
this vaporization is very effective and best way to give up smoke easily that don't contain any harm to body an makes it easy and effective.
ReplyDeleteIf price isn't the elephant in the room, it should be.
ReplyDeleteThe Xbox 360 delivers many new features that players will cherish:
. There are several levels and hurdles that the players
must complete before time runs out.
Also visit my site: psn codes free
Appreciate this post. Let me try it out.
ReplyDeleteAlso visit my page - private number plates
ray ban sunglasses
ReplyDeletenike sb shoes
ralph lauren outlet
coach handbags
yeezy boost 350 v2
prada handbags
nike outlet
cheap jordans
vans outlet
oakley sunglasses canada
2017.5.8xukaimin