19 June 2009
Field ion microscope
The invention:Amicroscope that uses ions formed in high-voltage
electric fields to view atoms on metal surfaces.
The people behind the invention:
Erwin Wilhelm Müller (1911-1977), a physicist, engineer, and
research professor
J. Robert Oppenheimer (1904-1967), an American physicist
To See Beneath the Surface
In the early twentieth century, developments in physics, especially
quantum mechanics, paved the way for the application of
new theoretical and experimental knowledge to the problem of
viewing the atomic structure of metal surfaces. Of primary importance
were American physicist George Gamow’s 1928 theoretical
explanation of the field emission of electrons by quantum mechanical
means and J. Robert Oppenheimer’s 1928 prediction of the
quantum mechanical ionization of hydrogen in a strong electric
field.
In 1936, ErwinWilhelm Müller developed his field emission microscope,
the first in a series of instruments that would exploit
these developments. It was to be the first instrument to view
atomic structures—although not the individual atoms themselves—
directly. Müller’s subsequent field ion microscope utilized the
same basic concepts used in the field emission microscope yet
proved to be a much more powerful and versatile instrument. By
1956, Müller’s invention allowed him to view the crystal lattice
structure of metals in atomic detail; it actually showed the constituent
atoms.
The field emission and field ion microscopes make it possible to
view the atomic surface structures of metals on fluorescent screens.
The field ion microscope is the direct descendant of the field emission
microscope. In the case of the field emission microscope, the
images are projected by electrons emitted directly from the tip of a
metal needle, which constitutes the specimen under investigation.These electrons produce an image of the atomic lattice structure of
the needle’s surface. The needle serves as the electron-donating
electrode in a vacuum tube, also known as the “cathode.” Afluorescent
screen that serves as the electron-receiving electrode, or “anode,”
is placed opposite the needle. When sufficient electrical voltage
is applied across the cathode and anode, the needle tip emits
electrons, which strike the screen. The image produced on the
screen is a projection of the electron source—the needle surface’s
atomic lattice structure.
Müller studied the effect of needle shape on the performance of
the microscope throughout much of 1937. When the needles had
been properly shaped, Müller was able to realize magnifications of
up to 1 million times. This magnification allowed Müller to view
what he called “maps” of the atomic crystal structure of metals,
since the needles were so small that they were often composed of
only one simple crystal of the material. While the magnification
may have been great, however, the resolution of the instrument was
severely limited by the physics of emitted electrons, which caused
the images Müller obtained to be blurred.
Improving the View
In 1943, while working in Berlin, Müller realized that the resolution
of the field emission microscope was limited by two factors.
The electron velocity, a particle property, was extremely high and
uncontrollably random, causing the micrographic images to be
blurred. In addition, the electrons had an unsatisfactorily high wavelength.
When Müller combined these two factors, he was able to determine
that the field emission microscope could never depict single
atoms; it was a physical impossibility for it to distinguish one
atom from another.
By 1951, this limitation led him to develop the technology behind
the field ion microscope. In 1952, Müller moved to the United States
and founded the Pennsylvania State University Field Emission Laboratory.
He perfected the field ion microscope between 1952 and
1956.
The field ion microscope utilized positive ions instead of electrons
to create the atomic surface images on the fluorescent screen.When an easily ionized gas—at first hydrogen, but usually helium,
neon, or argon—was introduced into the evacuated tube, the emitted
electrons ionized the gas atoms, creating a stream of positively
charged particles, much as Oppenheimer had predicted in 1928.
Müller’s use of positive ions circumvented one of the resolution
problems inherent in the use of imaging electrons. Like the electrons,
however, the positive ions traversed the tube with unpredictably random velocities. Müller eliminated this problem by cryogenically
cooling the needle tip with a supercooled liquefied gas such as
nitrogen or hydrogen.
By 1956, Müller had perfected the means of supplying imaging
positive ions by filling the vacuum tube with an extremely small
quantity of an inert gas such as helium, neon, or argon. By using
such a gas, Müller was assured that no chemical reaction would occur
between the needle tip and the gas; any such reaction would alter
the surface atomic structure of the needle and thus alter the resulting
microscopic image. The imaging ions allowed the field ion
microscope to image the emitter surface to a resolution of between
two and three angstroms, making it ten times more accurate than its
close relative, the field emission microscope.
Consequences
The immediate impact of the field ion microscope was its influence
on the study of metallic surfaces. It is a well-known fact of materials
science that the physical properties of metals are influenced
by the imperfections in their constituent lattice structures. It was not
possible to view the atomic structure of the lattice, and thus the finest
detail of any imperfection, until the field ion microscope was developed.
The field ion microscope is the only instrument powerful
enough to view the structural flaws of metal specimens in atomic
detail.
Although the instrument may be extremely powerful, the extremely
large electrical fields required in the imaging process preclude
the instrument’s application to all but the heartiest of metallic
specimens. The field strength of 500 million volts per centimeter
exerts an average stress on metal specimens in the range of almost
1 ton per square millimeter. Metals such as iron and platinum can
withstand this strain because of the shape of the needles into which
they are formed. Yet this limitation of the instrument makes it extremely
difficult to examine biological materials, which cannot withstand
the amount of stress that metals can. Apractical by-product in
the study of field ionization—field evaporation—eventually permitted
scientists to view large biological molecules.
Field evaporation also allowed surface scientists to view the atomic structures of biological molecules. By embedding molecules
such as phthalocyanine within the metal needle, scientists have
been able to view the atomic structures of large biological molecules
by field evaporating much of the surrounding metal until the biological
material remains at the needle’s surface.
Subscribe to:
Post Comments (Atom)
1 comment:
Attractive element of content. I just stumbled upon your blog and in accession capital
to assert that I acquire in fact loved account your weblog posts.
Any way I will be subscribing to your feeds or even I achievement you get admission to consistently fast.
my website - viagra
Post a Comment